If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8b^2-40=0
a = 8; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·8·(-40)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*8}=\frac{0-16\sqrt{5}}{16} =-\frac{16\sqrt{5}}{16} =-\sqrt{5} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*8}=\frac{0+16\sqrt{5}}{16} =\frac{16\sqrt{5}}{16} =\sqrt{5} $
| 10j-4j=6 | | x+(x+1)+(x+2)=-186 | | (7)=12x-6/6 | | 1/2t=16 | | 4-2y=-6y-20 | | 3(4-2)=-2x | | n+1=25 | | -4y+8=9y-18 | | 4(-2x-8)=-16 | | 2x+5+10=16 | | -4y+12=-2(y-9) | | 30=12+p | | 1/3c=-3 | | 13/y=5 | | X+x(0.05)=150 | | 2x+5+16+10=180 | | r-10=17 | | 6-3y+6=7y+52-2y | | 5z-16=3z+8 | | 3(u+6)-7u=34 | | 19-3x=-10x-9 | | 0.5=(0.85)^t | | -3a+11a=-16 | | (-7x-1)=(3x+1) | | 13+y=5 | | 7(w-2)-2w=-29 | | 4y+5+105=180 | | 4j=-80 | | 6(2x-1)-3=3x+1 | | -16=6u+8(u+5) | | 15x-2=4x-10 | | -2(3m-1)+3(m-4)=17 |